
E04 – Minimizing or Maximizing a Function

E04HEF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E04HEF is a comprehensive modified Gauss–Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables (m ≥ n). First and second derivatives are
required.

The routine is intended for functions which have continuous first and second derivatives (although it will
usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04HEF(M, N, LSQFUN, LSQHES, LSQMON, IPRINT, MAXCAL,
1 ETA, XTOL, STEPMX, X, FSUMSQ, FVEC, FJAC, LJ, S,
2 V, LV, NITER, NF, IW, LIW, W, LW, IFAIL)
INTEGER M, N, IPRINT, MAXCAL, LJ, LV, NITER, NF,
1 IW(LIW), LIW, LW, IFAIL
real ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M),
1 FJAC(LJ,N), S(N), V(LV,N), W(LW)
EXTERNAL LSQFUN, LSQHES, LSQMON

3 Description

This routine is essentially identical to the subroutine LSQSDN in the National Physical Laboratory
Algorithms Library. It is applicable to problems of the form:

MinimizeF (x) =
m∑

i=1

[fi(x)]
2

where x = (x1, x2, . . . , xn)T and m ≥ n. (The functions fi(x) are often referred to as ‘residuals’.) The
user must supply subroutines to calculate the values of the fi(x) and their first derivatives and second
derivatives at any point x.

From a starting point x(1) supplied by the user, the routine generates a sequence of points x(2), x(3), . . . ,
which is intended to converge to a local minimum of F (x). The sequence of points is given by

x(k+1) = x(k) + α(k)p(k)

where the vector p(k) is a direction of search, and α(k) is chosen such that F (x(k) + α(k)p(k)) is
approximately a minimum with respect to α(k).

The vector p(k) used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p(k) is the Gauss–Newton direction; otherwise the
second derivatives of the fi(x) are taken into account.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton’s method.

4 References

[1] Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least-squares problem
SIAM J. Numer. Anal. 15 977–992

[NP3390/19/pdf] E04HEF.1

E04HEF E04 – Minimizing or Maximizing a Function

5 Parameters

1: M — INTEGER Input
2: N — INTEGER Input

On entry: the number m of residuals, fi(x), and the number n of variables, xj .

Constraint: 1 ≤ N ≤ M.

3: LSQFUN — SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi(x) and Jacobian matrix of first derivatives ∂fi

∂xj
at

any point x. (However, if the user does not wish to calculate the residuals or first derivatives at a
particular x, there is the option of setting a parameter to cause E04HEF to terminate immediately.)

Its specification is:

SUBROUTINE LSQFUN(IFLAG, M, N, XC, FVECC, FJACC, LJC, IW, LIW, W,
1 LW)
INTEGER IFLAG, M, N, LJC, IW(LIW), LIW, LW
real XC(N), FVECC(M), FJACC(LJC,N), W(LW)

Important: the dimension declaration FJACC must contain the variable LJC, not an integer
constant.

1: IFLAG — INTEGER Input/Output
On entry: to LSQFUN, IFLAG will be set to 2.

On exit: if it is not possible to evaluate the fi(x) or their first derivatives at the point given
in XC (or if it wished to stop the calculations for any other reason), the user should reset
IFLAG to some negative number and return control to E04HEF. E04HEF will then terminate
immediately, with IFAIL set to the user’s setting of IFLAG.

2: M — INTEGER Input
3: N — INTEGER Input

On entry: the numbers m and n of residuals and variables, respectively.

4: XC(N) — real array Input
On entry: the point x at which the values of the fi and the ∂fi

∂xj
are required.

5: FVECC(M) — real array Output
On exit: unless IFLAG is reset to a negative number, FVECC(i) must contain the value of fi

at the point x, for i = 1, 2, . . . , m.

6: FJACC(LJC,N) — real array Output
On exit: unless IFLAG is reset to a negative number, FJACC(i, j) must contain the value of
∂fi

∂xj
at the point x, for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

7: LJC — INTEGER Input
On entry: the first dimension of the array FJACC.

8: IW(LIW) — INTEGER array Workspace
9: LIW — INTEGER Input
10: W(LW) — real array Workspace
11: LW — INTEGER Input

LSQFUN is called with E04HEF’s parameters IW, LIW, W, LW as these parameters. They are
present so that, when other library routines require the solution of a minimization subproblem,
constants needed for the evaluation of residuals can be passed through IW and W. Similarly,
users could pass quantities of LSQFUN from the segment which calls E04HEF by using
partitions of IW and W beyond those used as workspace by E04HEF. However, because of
the danger of mistakes in partitioning, it is recommended that users should pass information
to LSQFUN via COMMON and not use IW or W at all. In any case users must not change
the elements of IW and W used as workspace by E04HEF.

E04HEF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

Note. LSQFUN should be tested separately before being used in conjunction with E04HEF.
LSQFUN must be declared as EXTERNAL in the (sub)program from which E04HEF is called.
Parameters denoted as Input must not be changed by this procedure.

4: LSQHES — SUBROUTINE, supplied by the user. External Procedure

LSQHES must calculate the elements of the symmetric matrix

B(x) =
m∑

i=1

fi(x)Gi(x),

at any point x, where Gi(x) is the Hessian matrix of fi(x). (As with LSQFUN, there is the option
of causing E04HEF to terminate immediately.)

Its specification is:

SUBROUTINE LSQHES(IFLAG, M, N, FVECC, XC, B, LB, IW, LIW, W, LW)
INTEGER IFLAG, M, N, LB, IW(LIW), LIW, LW
real FVECC(M), XC(N), B(LB), W(LW)

1: IFLAG — INTEGER Input/Output
On entry: IFLAG is set to a non-negative number.

On exit: if LSQHES resets IFLAG to some negative number, E04HEF will terminate
immediately, with IFAIL set to the user’s setting of IFLAG.

2: M — INTEGER Input
3: N — INTEGER Input

On entry: the numbers m and n of residuals and variables, respectively.

4: FVECC(M) — real array Input
On entry: the value of the residual fi at the point x, for i = 1, 2, . . . , m, so that the values of
the fi can be used in the calculation of the elements of B.

5: XC(N) — real array Input
On entry: the point x at which the elements of B are to be evaluated.

6: B(LB) — real array Output
On exit: unless IFLAG is reset to a negative number, B must contain the lower triangle of the
matrix B(x), evaluated at the point x, stored by rows. (The upper triangle is not required

because the matrix is symmetric.) More precisely, B(j(j − 1)/2+ k) must contain
m∑

i=1

fi
∂2fi

∂xj∂xk

evaluated at the point x, for j = 1, 2, . . . , n and k = 1, 2, . . . , j.

7: LB — INTEGER Input
On entry: the length of the array B.

8: IW(LIW) — INTEGER array Workspace
9: LIW — INTEGER Input
10: W(LW) — real array Workspace
11: LW — INTEGER Input

As in LSQFUN, these parameters correspond to the parameters IW, LIW, W, LW of E04HEF.
LSQHES must not change the sections of IW and W required as workspace by E04HEF. Again,
it is recommended that the user should pass quantities to LSQHES via COMMON and not
use IW or W at all.

Note. LSQHES should be tested separately before being used in conjunction with E04HEF.
LSQHES must be declared as EXTERNAL in the (sub)program from which E04HEF is called.
Parameters denoted as Input must not be changed by this procedure.

[NP3390/19/pdf] E04HEF.3

E04HEF E04 – Minimizing or Maximizing a Function

5: LSQMON — SUBROUTINE, supplied by the user. External Procedure

If IPRINT ≥ 0, the user must supply a subroutine LSQMON which is suitable for monitoring the
minimization process. LSQMON must not change the values of any of its parameters.

If IPRINT < 0, the dummy routine E04FDZ can be used as LSQMON. (In some implementations
the name of this routine is FDZE04; refer to the Users’ Note for your implementation.)

Its specification is:

SUBROUTINE LSQMON(M, N, XC, FVECC, FJACC, LJC, S, IGRADE, NITER,
1 NF, IW, LIW, W, LW)
INTEGER M, N, LJC, IGRADE, NITER, NF, IW(LIW), LIW, LW
real XC(N), FVECC(M), FJACC(LJC,N), S(N), W(LW)

Important: the dimension declaration for FJACC must contain the variable LJC, not an integer
constant.

1: M — INTEGER Input
2: N — INTEGER Input

On entry: the numbers m and n of residuals and variables, respectively.

3: XC(N) — real array Input
On entry: the co-ordinates of the current point x.

4: FVECC(M) — real array Input
On entry: the values of the residuals fi at the point x.

5: FJACC(LJC,N) — real array Input
On entry: FJACC(i, j) contains the value of ∂fi

∂xj
at the current point x, for i = 1, 2, . . . , m;

j = 1, 2, . . . , n.

6: LJC — INTEGER Input
On entry: the first dimension of the array FJACC.

7: S(N) — real array Input
On entry: the singular values of the current Jacobian matrix. Thus S may be useful as
information about the structure of the user’s problem. (If IPRINT > 0, LSQMON is called at
the initial point before the singular values have been calculated. So the elements of S are set
to zero for the first call of LSQMON.)

8: IGRADE — INTEGER Input
On entry: E04HEF estimates the dimension of the subspace for which the Jacobian matrix
can be used as a valid approximation to the curvature (see Gill and Murray [1]). This estimate
is called the grade of the Jacobian matrix, and IGRADE gives its current value.

9: NITER — INTEGER Input
On entry: the number of iterations which have been performed in E04HEF.

10: NF — INTEGER Input
On entry: the number of times that LSQFUN has been called so far. Thus NF gives the
number of evaluations of the residuals and the Jacobian matrix.

11: IW(LIW) — INTEGER array Workspace
12: LIW — INTEGER Input
13: W(LW) — real array Workspace
14: LW — INTEGER Input

As in LSQFUN and LSQHES, these parameters correspond to the parameters IW, LIW, W,
LW of E04HEF. They are included in LSQMON’s parameter list primarily for when E04HEF
is called by other library routines.

E04HEF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

Note. The user should normally print the sum of squares of residuals, so as to be able to examine
the sequence of values of F (x) mentioned in Section 7. It is usually helpful to also print XC, the
gradient of the sum of squares, NITER and NF.
LSQMON must be declared as EXTERNAL in the (sub)program from which E04HEF is called.
Parameters denoted as Input must not be changed by this procedure.

6: IPRINT — INTEGER Input

On entry: IPRINT specifies the frequency with which LSQMON is to be called. If IPRINT > 0,
LSQMON is called once every IPRINT iterations and just before exit from E04HEF. If IPRINT = 0,
LSQMON is just called at the final point. If IPRINT < 0, LSQMON is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT = 1.

7: MAXCAL — INTEGER Input

On entry: this parameter is present so as to enable the user to limit the number of times that
LSQFUN is called by E04HEF. There will be an error exit (see Section 6) after MAXCAL calls of
LSQFUN.

Suggested value: MAXCAL = 50× n.

Constraint: MAXCAL ≥ 1.

8: ETA — real Input

On entry: every iteration of E04HEF involves a linear minimization (i.e., minimization of
F (x(k) + α(k)p(k)) with respect to α(k)). ETA must lie in the range 0.0 ≤ ETA < 1.0, and specifies
how accurately these linear minimizations are to be performed. The minimum with respect to α(k)

will be located more accurately for small values of ETA (say 0.01) than for large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations performed by
E04HEF, they will increase the number of calls of LSQFUN made each iteration. On balance it is
usually more efficient to perform a low accuracy minimization.

Suggested value: ETA = 0.5 (ETA = 0.0 if N = 1).

Constraint: 0.0 ≤ ETA < 1.0.

9: XTOL — real Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a normal
exit, is such that

‖xsol − xtrue‖ < XTOL× (1.0 + ‖xtrue‖),

where ‖y‖ =

√√√√
n∑

j=1

y2
j . For example, if the elements of xsol are not much larger than 1.0 in modulus

and if XTOL = 1.0E−5, then xsol is usually accurate to about 5 decimal places. (For further details
see Section 7.)

If F (x) and the variables are scaled roughly as described in Section 8 and ε is the machine
precision, then a setting of order XTOL =

√
ε will usually be appropriate. If XTOL is set to 0.0

or some positive value less than 10ε, E04HEF will use 10ε instead of XTOL, since 10ε is probably
the smallest reasonable setting.

Constraint: XTOL ≥ 0.0.

[NP3390/19/pdf] E04HEF.5

E04HEF E04 – Minimizing or Maximizing a Function

10: STEPMX — real Input

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied
by the user. (For maximum efficiency, a slight overestimate is preferable.) E04HEF will ensure that,
for each iteration

n∑
j=1

(x(k)
j − x

(k−1)
j)2 ≤ (STEPMX)2,

where k is the iteration number. Thus, if the problem has more than one solution, E04HEF is most
likely to find the one nearest to the starting point. On difficult problems, a realistic choice can
prevent the sequence of x(k) entering a region where the problem is ill-behaved and can help avoid
overflow in the evaluation of F (x). However, an underestimate of STEPMX can lead to inefficiency.

Suggested value: STEPMX = 100000.0.

Constraint: STEPMX ≥ XTOL.

11: X(N) — real array Input/Output

On entry: X(j) must be set to a guess at the jth component of the position of the minimum, for
j = 1, 2, . . . , n.

On exit: the final point x(k). Thus, if IFAIL = 0 on exit, X(j) is the jth component of the estimated
position of the minimum.

12: FSUMSQ — real Output

On exit: the value of F (x), the sum of squares of the residuals fi(x), at the final point given in X.

13: FVEC(M) — real array Output

On exit: the value of the residual fi(x) at the final point in X, for i = 1, 2, . . . , m.

14: FJAC(LJ,N) — real array Output

On exit: the value of the first derivative ∂fi

∂xj
evaluated at the final point given in X, for i = 1, 2, . . . , m;

j = 1, 2, . . . , n.

15: LJ — INTEGER Input

On entry: the dimension of the array FJAC as declared in the (sub)program from which E04HEF
is called.

Constraint: LJ ≥ M.

16: S(N) — real array Output

On exit: the singular values of the Jacobian matrix at the final point. Thus S may be useful as
information about the structure of the user’s problem.

17: V(LV,N) — real array Output

On exit: the matrix V associated with the singular value decomposition

J = USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for statistical
purposes, since it is the matrix of orthonormalised eigenvectors of JT J .

18: LV — INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04HEF
is called.

Constraint: LV ≥ N.

19: NITER — INTEGER Output

On exit: the number of iterations which have been performed in E04HEF.

E04HEF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

20: NF — INTEGER Output

On exit: the number of times that the residuals and Jacobian matrix have been evaluated (i.e.,
number of calls of LSQFUN).

21: IW(LIW) — INTEGER array Workspace
22: LIW — INTEGER Input

On entry: the length of IW as declared in the (sub)program from which E04HEF is called.

Constraint: LIW ≥ 1.

23: W(LW) — real array Workspace
24: LW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04HEF is
called.

Constraints:

LW ≥ 7 ×N + 2×M ×N + M + N ×N, if N > 1,
LW ≥ 9 + 3 ×M, if N = 1.

25: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04HEF because the user has set IFLAG negative
in LSQFUN or LSQHES. The value of IFAIL will be the same as the user’s setting of IFLAG.

IFAIL = 1

On entry, N < 1,

or M < N,

or MAXCAL < 1,

or ETA < 0.0,

or ETA ≥ 1.0,

or XTOL < 0.0,

or STEPMX < XTOL,

or LJ < M,

or LV < N,

or LIW < 1,

or LW < 7 ×N + M ×N + 2 ×M + N ×N, when N > 1,

or LW < 9 + 3 ×M, when N = 1.

[NP3390/19/pdf] E04HEF.7

E04HEF E04 – Minimizing or Maximizing a Function

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of FVEC,
FJAC, S or V.

IFAIL = 2

There have been MAXCAL calls of LSQFUN. If steady reductions in the sum of squares, F (x),
were monitored up to the point where this exit occurred, then the exit probably occurred simply
because MAXCAL was set too small, so the calculations should be restarted from the final point
held in X. This exit may also indicate that F (x) has no minimum.

IFAIL = 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because XTOL has been set so small that rounding errors in the evaluation of the
residuals and derivatives make attainment of the convergence conditions impossible.

IFAIL = 4

The method for computing the singular value decomposition of the Jacobian matrix has failed
to converge in a reasonable number of sub-iterations. It may be worth applying E04HEF again
starting with an initial approximation which is not too close to the point at which the failure
occurred.

The values IFAIL = 2, 3 and 4 may also be caused by mistakes in LSQFUN or LSQHES, by the
formulation of the problem or by an awkward function. If there are no such mistakes it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure.

7 Accuracy

A successful exit (IFAIL = 0) is made from E04HEF when the matrix of second derivatives of F (x) is
positive-definite, and when (B1, B2 and B3) or B4 or B5 hold, where

B1 ≡ α(k) × ‖p(k)‖ < (XTOL + ε)× (1.0 + ‖x(k)‖)
B2 ≡ |F (k) − F (k−1)| < (XTOL + ε)2 × (1.0 + F (k))
B3 ≡ ‖g(k)‖ < ε

1
3 × (1.0 + F (k))

B4 ≡ F (k) < ε2

B5 ≡ ‖g(k)‖ < (ε ×
√

F (k))1/2

and where ‖.‖ and ε are as defined in Section 5, and F (k) and g(k) are the values of F (x) and its vector
of first derivatives at x(k).

If IFAIL = 0, then the vector in X on exit, xsol, is almost certainly an estimate of xtrue, the position of
the minimum to the accuracy specified by XTOL.

If IFAIL = 3, then xsol may still be a good estimate of xtrue, but to verify this the user should make the
following checks. If

(1) the sequence {F (x(k))} converges to F (xsol) at a superlinear or a fast linear rate, and
(2) g(xsol)

T g(xsol) < 10ε,

where T denotes transpose, then it is almost certain that xsol is a close approximation to the minimum.
When (2) is true, then usually F (xsol) is a close approximation to F (xtrue). The values of F (x(k)) can be
calculated in LSQMON, and the vector g(xsol) can be calculated from the contents of FVEC and FJAC
on exit from E04HEF.

Further suggestions about confirmation of a computed solution are given in the Chapter Introduction.

8 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F (x), the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of E04HEF varies, but for m � n is approximately

E04HEF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

n×m2 +O(n3). In addition, each iteration makes at least one call of LSQFUN, and some iterations may
call LSQHES. So, unless the residuals and their derivatives can be evaluated very quickly, the run time
will be dominated by the time spent in LSQFUN (and, to a lesser extent, in LSQHES).

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values of
the xj are each in the range (−1,+1), and so that at points one unit away from the solution, F (x)
differs from its value at the solution by approximately one unit. This will usually imply that the Hessian
matrix of F (x) at the solution is well-conditioned. It is unlikely that the user will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04HEF will take less computer time.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data, elements of
the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent
call to E04YCF, using information returned in the arrays S and V. See E04YCF for further details.

9 Example

To find least-squares estimates of x1, x2 and x3 in the model

y = x1 +
t1

x2t2 + x3t3

using the 15 sets of data given in the following table:

y t1 t2 t3
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

Before calling E04HEF, the program calls E04YAF and E04YBF to check LSQFUN and LSQHES. It
uses (0.5, 1.0, 1.5) as the initial guess at the position of the minimum.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04HEF Example Program Text.
* Mark 15 Revised. NAG Copyright 1991.
* .. Parameters ..

INTEGER N, M, NT, LJ, LV, LB, LIW, LW
PARAMETER (N=3,M=15,NT=3,LJ=M,LV=N,LB=N*(N+1)/2,LIW=1,

+ LW=7*N+M*N+2*M+N*N)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Arrays in Common ..
real T(M,NT), Y(M)

[NP3390/19/pdf] E04HEF.9

E04HEF E04 – Minimizing or Maximizing a Function

* .. Local Scalars ..
real ETA, FSUMSQ, STEPMX, XTOL
INTEGER I, IFAIL, IPRINT, J, MAXCAL, NF, NITER

* .. Local Arrays ..
real B(LB), FJAC(LJ,N), FVEC(M), G(N), S(N), V(LV,N),

+ W(LW), X(N)
INTEGER IW(LIW)

* .. External Functions ..
real X02AJF
EXTERNAL X02AJF

* .. External Subroutines ..
EXTERNAL E04HEF, E04YAF, E04YBF, LSQFUN, LSQGRD, LSQHES,

+ LSQMON
* .. Intrinsic Functions ..

INTRINSIC SQRT
* .. Common blocks ..

COMMON Y, T
* .. Executable Statements ..

WRITE (NOUT,*) ’E04HEF Example Program Results’
* Skip heading in data file

READ (NIN,*)
* Observations of TJ (J = 1, 2, 3) are held in T(I, J)
* (I = 1, 2, . . . , 15)

DO 20 I = 1, M
READ (NIN,*) Y(I), (T(I,J),J=1,NT)

20 CONTINUE
* Set up an arbitrary point at which to check the derivatives

X(1) = 0.19e0
X(2) = -1.34e0
X(3) = 0.88e0

* Check the 1st derivatives
IFAIL = 0

*
CALL E04YAF(M,N,LSQFUN,X,FVEC,FJAC,LJ,IW,LIW,W,LW,IFAIL)

*
* Check the evaluation of B

IFAIL = 0
*

CALL E04YBF(M,N,LSQFUN,LSQHES,X,FVEC,FJAC,LJ,B,LB,IW,LIW,W,LW,
+ IFAIL)

*
* Continue setting parameters for E04HEF
* * Set IPRINT to 1 to obtain output from LSQMON at each iteration *

IPRINT = -1
MAXCAL = 50*N
ETA = 0.9e0
XTOL = 10.0e0*SQRT(X02AJF())

* We estimate that the minimum will be within 10 units of the
* starting point

STEPMX = 10.0e0
* Set up the starting point

X(1) = 0.5e0
X(2) = 1.0e0
X(3) = 1.5e0
IFAIL = 1

*

E04HEF.10 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

CALL E04HEF(M,N,LSQFUN,LSQHES,LSQMON,IPRINT,MAXCAL,ETA,XTOL,
+ STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,LIW,W,
+ LW,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Error exit type’, IFAIL,

+ ’ - see routine document’
END IF
IF (IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99998) ’On exit, the sum of squares is’, FSUMSQ
WRITE (NOUT,99998) ’at the point’, (X(J),J=1,N)
CALL LSQGRD(M,N,FVEC,FJAC,LJ,G)
WRITE (NOUT,99997) ’The corresponding gradient is’,

+ (G(J),J=1,N)
WRITE (NOUT,*) ’ (machine dependent)’
WRITE (NOUT,*) ’and the residuals are’
WRITE (NOUT,99996) (FVEC(I),I=1,M)

END IF
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,3F12.4)
99997 FORMAT (1X,A,1P,3e12.3)
99996 FORMAT (1X,1P,e9.1)

END
*

SUBROUTINE LSQFUN(IFLAG,M,N,XC,FVECC,FJACC,LJC,IW,LIW,W,LW)
* Routine to evaluate the residuals and their 1st derivatives
* .. Parameters ..

INTEGER NT, MDEC
PARAMETER (NT=3,MDEC=15)

* .. Scalar Arguments ..
INTEGER IFLAG, LIW, LJC, LW, M, N

* .. Array Arguments ..
real FJACC(LJC,N), FVECC(M), W(LW), XC(N)
INTEGER IW(LIW)

* .. Arrays in Common ..
real T(MDEC,NT), Y(MDEC)

* .. Local Scalars ..
real DENOM, DUMMY
INTEGER I

* .. Common blocks ..
COMMON Y, T

* .. Executable Statements ..
DO 20 I = 1, M

DENOM = XC(2)*T(I,2) + XC(3)*T(I,3)
FVECC(I) = XC(1) + T(I,1)/DENOM - Y(I)
FJACC(I,1) = 1.0e0
DUMMY = -1.0e0/(DENOM*DENOM)
FJACC(I,2) = T(I,1)*T(I,2)*DUMMY
FJACC(I,3) = T(I,1)*T(I,3)*DUMMY

20 CONTINUE
RETURN
END

*

[NP3390/19/pdf] E04HEF.11

E04HEF E04 – Minimizing or Maximizing a Function

SUBROUTINE LSQHES(IFLAG,M,N,FVECC,XC,B,LB,IW,LIW,W,LW)
* Routine to compute the lower triangle of the matrix B
* (stored by rows in the array B)
* .. Parameters ..

INTEGER NT, MDEC
PARAMETER (NT=3,MDEC=15)

* .. Scalar Arguments ..
INTEGER IFLAG, LB, LIW, LW, M, N

* .. Array Arguments ..
real B(LB), FVECC(M), W(LW), XC(N)
INTEGER IW(LIW)

* .. Arrays in Common ..
real T(MDEC,NT), Y(MDEC)

* .. Local Scalars ..
real DUMMY, SUM22, SUM32, SUM33
INTEGER I

* .. Common blocks ..
COMMON Y, T

* .. Executable Statements ..
B(1) = 0.0e0
B(2) = 0.0e0
SUM22 = 0.0e0
SUM32 = 0.0e0
SUM33 = 0.0e0
DO 20 I = 1, M

DUMMY = 2.0e0*T(I,1)/(XC(2)*T(I,2)+XC(3)*T(I,3))**3
SUM22 = SUM22 + FVECC(I)*DUMMY*T(I,2)**2
SUM32 = SUM32 + FVECC(I)*DUMMY*T(I,2)*T(I,3)
SUM33 = SUM33 + FVECC(I)*DUMMY*T(I,3)**2

20 CONTINUE
B(3) = SUM22
B(4) = 0.0e0
B(5) = SUM32
B(6) = SUM33
RETURN
END

*
SUBROUTINE LSQMON(M,N,XC,FVECC,FJACC,LJC,S,IGRADE,NITER,NF,IW,LIW,

+ W,LW)
* Monitoring routine
* .. Parameters ..

INTEGER NDEC
PARAMETER (NDEC=3)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
INTEGER IGRADE, LIW, LJC, LW, M, N, NF, NITER

* .. Array Arguments ..
real FJACC(LJC,N), FVECC(M), S(N), W(LW), XC(N)
INTEGER IW(LIW)

* .. Local Scalars ..
real FSUMSQ, GTG
INTEGER J

* .. Local Arrays ..
real G(NDEC)

* .. External Functions ..
real F06EAF
EXTERNAL F06EAF

E04HEF.12 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04HEF

* .. External Subroutines ..
EXTERNAL LSQGRD

* .. Executable Statements ..
FSUMSQ = F06EAF(M,FVECC,1,FVECC,1)
CALL LSQGRD(M,N,FVECC,FJACC,LJC,G)
GTG = F06EAF(N,G,1,G,1)
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ Itns F evals SUMSQ GTG grade’
WRITE (NOUT,99999) NITER, NF, FSUMSQ, GTG, IGRADE
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ X G Singular values’
DO 20 J = 1, N

WRITE (NOUT,99998) XC(J), G(J), S(J)
20 CONTINUE

RETURN
*
99999 FORMAT (1X,I4,6X,I5,6X,1P,e13.5,6X,1P,e9.1,6X,I3)
99998 FORMAT (1X,1P,e13.5,10X,1P,e9.1,10X,1P,e9.1)

END
*

SUBROUTINE LSQGRD(M,N,FVECC,FJACC,LJC,G)
* Routine to evaluate gradient of the sum of squares
* .. Scalar Arguments ..

INTEGER LJC, M, N
* .. Array Arguments ..

real FJACC(LJC,N), FVECC(M), G(N)
* .. Local Scalars ..

real SUM
INTEGER I, J

* .. Executable Statements ..
DO 40 J = 1, N

SUM = 0.0e0
DO 20 I = 1, M

SUM = SUM + FJACC(I,J)*FVECC(I)
20 CONTINUE

G(J) = SUM + SUM
40 CONTINUE

RETURN
END

9.2 Program Data

E04HEF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0

[NP3390/19/pdf] E04HEF.13

E04HEF E04 – Minimizing or Maximizing a Function

2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

9.3 Program Results

E04HEF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The corresponding gradient is -6.059E-12 9.030E-11 9.385E-11

(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03
-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02
-1.8E-02
-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
6.8E-03

E04HEF.14 (last) [NP3390/19/pdf]

